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The chaotic scattering theory is extended here to obtain escape-rate expressions for the transport
coefficients appropriate for a simple classical fluid or for a chemically reacting system. This theory al-
lows various transport coefficients, such as the coefficients of viscosity, thermal conductivity, etc., to be
expressed in terms of the positive Lyapunov exponents and Kolmogorov-Sinai entropy of a set of phase
space trajectories that take place on an appropriate fractal repeller. This work generalizes the previous
results of Gaspard and Nicolis [Phys. Rev. Lett. 65, 1693 (1990)] for the coefficient of diffusion of a parti-

cle moving in a fixed array of scatterers.
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I. INTRODUCTION

Our fundamental understanding of nonequilibrium ir-
reversible phenomena is still very rudimentary. While
there has been a considerable advance in this area with
the introduction of the Green-Kubo time correlation for-
mulas for transport and reaction rate coefficients, the
dynamical origin of the irreversible phenomena and the
mechanisms responsible for the relaxation to thermo-
dynamic equilibrium remain obscure. Several logical
gaps persist in our current understanding of the relation-
ship between the Hamiltonian equations governing the
microscopic dynamics and the Navier-Stokes and other
macroscopic equations. One of the major difficulties is
the absence of a clear and direct relationship between the
deterministic microscopic dynamics of a system, and the
stochastic description of the system that is useful for un-
derstanding its irreversible behavior. Although the usual
derivations of hydrodynamic or similar equations begin
with the correct microscopic equations, one always needs
some kind of initial ensemble, and a phase space average
over this ensemble in order to derive the equations of ir-
reversible thermodynamics. Moreover, the initial ensem-
ble is usually assumed to have some nice properties,
which themselves have no obvious foundation in the mi-
croscopic dynamics.

Unlike the case of equilibrium statistical mechanics
where the appropriate statistical ensembles have already
been identified by Gibbs, the standard theories have not
yet been able to identify, or to derive from basic princi-
ples, the nonequilibrium stationary or nonstationary sta-
tistical ensembles that would provide a rigorous basis for
a hydrodynamic description of a macroscopic system. Of
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particular importance would be a fundamental under-
standing of the hydrodynamic modes of a fluid, which are
connected to the most elementary relaxation phenomena
in fluids. The importance of the hydrodynamic modes
has been emphasized these last decades by the experimen-
tal development of neutron and laser light scattering
techniques, which allow their detailed study [1]. It is
therefore problematic that even the observed hydro-
dynamical modes are lacking of more fundamental
theoretical support within the standard theories.

The recent studies on chaos have shown that the dy-
namics of deterministic systems is very often unstable so
that randomness may be intrinsically generated by non-
linear equations of time evolution [2,3]. This remarkable
result opens new possibilities to understand the founda-
tion of nonequilibrium statistical mechanics and, in par-
ticular, of ergodicity [4]. In the modern theory of
dynamical systems, chaos is characterized in terms of
quantities such as the Lyapunov exponents, the
Kolmogorov-Sinai (KS) entropy, and the Pollicott-Ruelle
resonances [2,3]. In the context of nonequilibrium sta-
tistical mechanics, these quantities are defined at the mi-
croscopic level of description in contrast to the transport
and reaction-rate coefficients that characterize the mac-
roscopic level. If a direct connection could be established
between quantities at both levels, the nonequilibrium sta-
tionary or nonstationary states could then be defined at
the microscopic level in terms of the invariant or condi-
tionally invariant, real positive or complex measures on
which the characteristic quantities of chaos are defined.
In this way, the rigorous nonequilibrium statistical en-
sembles could be identified at the level of the microscopic
dynamics and a fundamental understanding of irreversi-
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ble processes would be reached.

Our method for developing such connections, which
has been developed by Hoover and Posch [5], and by
Evans, Cohen, and Morris [6], is based on a study of sys-
tems that are maintained in nonequilibrium steady states
by means of specially constructed external and internal
“forces” and a thermostat that removes energy generated
in the system by the special forces. This method leads to
interesting connections between transport coefficients,
such as the coefficients of diffusion or viscosity, and the
Lyapunov exponents of the thermostatted, forced system.
For the case of a thermostatted single particle moving (in
two dimensions) in a periodic Lorentz gas under the ac-
tion of an electric field, the connection between the
diffusion coefficient, or the electrical conductivity, and
the (two) Lyapunov exponents was studied by Baranyai,
Evans, and Cohen [7], and rigorous results establishing
this connection were obtained by Chernov, Eyink, Le-
bowitz and Sinai [8]. One feature of this approach is that
a Hamiltonian description of the system is not possible
due to the introduction of the thermostat, and the ques-
tion naturally arises as to whether a connection of the
sort described is possible for purely Hamiltonian systems.

This question was answered in the affirmative for the
case of a classical particle moving in an environment of
fixed scatterers by Gaspard and Nicolis [9,10]. They
were able to show that the diffusion coefficient of the
moving particle could be obtained in terms of the escape
rate for the particle from a bounded region of the scatter-
ers. This escape rate, in turn, is obtained —following ar-
guments of Kantz and Grassberger [11], Bohr and Rand
[12], Tel and co-workers [13], Grebogi, Ott, and Yorke
[14]—in terms of the positive Lyapunov exponents and
KS entropy that characterize the set of orbits of the mov-
ing particle that are trapped forever in the bounded re-
gion occupied by the scatterers. This set of “trapped” or-
bits form a fractal set of trajectories of the moving parti-
cle, and is referred to as the “repeller”” [15]. The relation
between the diffusion coefficient D for the moving parti-
cle and the dynamical quantities on the repeller is given

by [9]

D= lim

L— o

2

% S ML) —hgs(L)] . (1.1)

A;>0

Here, we suppose that the scatterers are confined to a
slab of width L in one dimension, and of infinite length in
perpendicular spatial directions; 3, . oA;(L) is the sum

over all positive Lyapunov exponents for trajectories on
the repeller, and hgg(L) is the KS entropy for trajectories
on the repeller. We assume, usually without proof, that
the system has ergodic properties such that the A; do not
depend on the particular trajectory on the repeller. We
also note that for the open systems considered here (i.e.,
particles not on the repeller escape from the region con-
taining the scatterers), the KS entropy on the repeller
does not equal the sum of the positive Lyapunov ex-
ponents, and the difference is of order L ~2 for large L if
the diffusion coefficient exists. The escape-rate expres-
sion for the diffusion coefficient has been evaluated ex-
plicitly for a two-dimensional periodic Lorentz gas [10],

for a two-dimensional multibaker transformation [16], for
a variety of one-dimensional maps [17], and for Lorentz
lattice gases [18]. In each of these cases, it has been pos-
sible to describe the dynamics on the fractal repeller in
terms of the Lyapunov exponents and KS entropy.

In the preceding discussion, the diffusion process is ac-
tually considered as a chaotic scattering occurring in a
large but finite system. Several recent works have been
devoted to chaotic scattering and have elucidated the role
of the fractal repeller in this phenomenon [19]. Usually,
chaotic scattering is envisaged on a small scatterer con-
taining a few scattering centers [13,19,20]. However,
chaotic scattering becomes controlled by diffusion when
the scatterer becomes large enough, and remarkable rela-
tions then exist between the properties of scattering and
those of diffusion, which have recently been described in
some detail [21]. This connection between diffusion and
chaotic scattering opens new fundamental perspectives,
especially in regard to nonequilibrium states and ensem-
bles.

The repeller is the support of an invariant probability
measure on which the average Lyapunov exponents and
the KS entropy are evaluated. Moreover, the difference
in the bracket of Eq. (1.1) turns out to be the leading
Pollicott-Ruelle resonance of the Liouvillian dynamics on
the repeller [21]. The state associated with this resonance
is related, at the microscopic level, to the invariant prob-
ability measure and, at the macroscopic level, to the
nonequilibrium nonstationary states corresponding to the
slowest hydrodynamical mode of diffusion. In this way,
the theory developed in [9,10,21] allows the identification
of the nonequilibrium statistical ensembles in the
aforementioned two-degree-of-freedom systems, a result
which was lacking within the standard theories.

It is the purpose of this paper to extend the chaotic
scattering theory and, in particular, the escape-rate for-
malism to include other transport coefficients, and to in-
clude a treatment of chemical reaction-rate coefficients.
This is accomplished by showing that the basic ideas used
to derive the expression for the diffusion coefficient of a
moving particle can be easily extended to apply to other
transport and reaction-rate coefficients as well.

In Secs. IT and III, we present the derivation of the
escape-rate expressions for transport and reaction-rate
coefficients. This derivation is based on the fact that all
of these coefficients can be related to the average mean
square displacement of some appropriate dynamical
quantity. In Sec. IV of the paper, we outline some out-
standing and interesting problems related to this work.
A careful discussion of the theory for chemical reaction
rates is given in Appendix A. Derivations of the relation
between the escape rate of a dynamical quantity from a
bounded region and the Lyapunov exponents and KS en-
tropy has been given in the literature for systems of a
small number of dimensions [2,11-14].

In a separate paper [22], we will review the derivation
of the escape-rate relation used here, so as to extend it to
systems with many degrees of freedom, to systems that
may be of nonhyperbolic type, and to illustrate the
method with applications to lattice gas automata and to
hard sphere gas systems.
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II. TRANSPORT COEFFICIENTS
AND THEIR HELFAND MOMENTS

We begin by constructing a large system of N particles
governed by Hamiltonian’s equation of classical mechan-
ics,

g=28 - _3H @.1

p aq

where (q,p) are the positions and momenta of the parti-
cles. We assume that these particles are contained in a
rectangular domain of volume V. At the borders, we may
consider either hard walls of infinite mass or periodic
boundary conditions. In the latter case, the total momen-
tum is conserved in addition to the total energy. More-
over, to simplify the relation with ergodic theory, we use
the microcanonical ensemble and work on energy shells
H=E.

In the large system limit (N, ¥V — o0 with N/V =n), ir-
reversible processes in such a classical many-body system
may be described by hydrodynamic equations such as the
Navier-Stokes equations, the diffusion equation, the
chemical kinetic equations ruling the time evolution of
chemical concentrations, or the equations of electrical
conductivity which incorporate Ohm’s law. These phe-
nomenological equations contain dissipative terms that
are dependent on transport and rate coefficients. The aim
of nonequilibrium statistical mechanics is to obtain these
coefficients in terms of the microscopic Hamiltonian
equations. Since the work of Maxwell and Boltzmann,
several methods have been developed to calculate these
coefficients. The most general method, developed by
Green and Kubo [23,24], is the time correlation function
approach, whereby the transport and rate coefficients are
given as time integrals of autocorrelations of the fluxes,

a= fo“’ Jlim (J@JT @)y | 2.2)

o
|
@
|

where J(® is the flux at time ¢ corresponding to the
coefficient a. It is a function of the canonical variables
(q,p) and is obtained by solving the equations of motion
for a time ¢ after an initial time so that

J{q,p)=JP [®%q,p)], (2.3)

where ®' denotes the flow in phase space induced by

Hamiltonian equations (2.1). We can express this in
terms of an N-particle streaming operator,

J @ =exp(—tL)J§ 2.4)

with the Liouvillian operator given in terms of a Poisson
bracket expression £ ={H, }. The average { ) in equa-
tion (2.2) is taken over a microcanonical ensemble in our
case.

It will be useful for us to apply the formulation of the
Green-Kubo expressions, as obtained by moments G ®
such that the fluxes J'% are derivatives as [25]

d
dt

An integration by parts shows that
((G,—GO)2>=fo’fo’(J,,J,,,>dt'dt"

JP=="G 2.5)

t T
= —— |(JoJ, 2dT. 2.6
2tf01t<07>r (2.6)
Accordingly, if the following condition is satisfied,
lim — JoJ2dT=0, 2.7
tim L [ e e
we obtain the equality
((G,—Gyx)*)
lim —°~f (JoJ )dr . 2.8)
t— o0 2

As a consequence, the transport and rate coefficients are
also given by [25]

a=lim - lim ([G}¥—

t—>w 2t V—>w

G 1?) . (2.9)
In Table I, we list moments appropriate for each trans-
port or rate coefficient, where E; =p?/2m + s j=nViis
the energy of particle i and V; is the potential energy of
interaction between particles i and j. Appendix A de-
scribes in more detail the case of chemical reactions.
Equation (2.9) shows that in case the transport or rate
coefficients are well defined (i.e., are positive and finite)
Helfand’s moments undergo a diffusive type of motion
along the axis of the moment G'?, Therefore, the mo-
ment may be considered as a random variable having a

TABLE 1. Helfand’s moments.

Process Moment
Self-diffusion G D=
Shear viscosit GM=—uee S x,p,
y v Vk,, T 21 Py
Bulk viscosity (¢y=¢+49) GV=—uo-cuoors03 x,p;,
3 ‘/ VkB 121
Heat conductivity GW=—ou 2 x;(E;—(E;))
v V T i=1 N
.. 1
Charge conductivity =" eZ;x;
V Vk B lzl
Chemical reaction rate G= —(N N—(N"Y)

vV VkyT
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probability density p(g) obeying a diffusion-type equa-
tion, in an equilibrium ensemble

»_, ¥
5 oyt (2.10)

with the transport or rate coefficient a a diffusion
coefficient. This equation is the Fokker-Planck equation
governing the equilibrium fluctuations of the Helfand
moments. Equivalently, one can recover Eq. (2.9) by sup-
posing that the moments satisfy a Langevin stochastic
differential equation,

GP=Jlo @2.11)
where the flux J(® is a white noise
(J{@)=0, (JPI¥)=2a8(t) . 2.12)

It is important to note that Egs. (2.10) or (2.12) are to
be considered as a simple representation of the results of
the time correlation function method for time scales that
are much longer than the time necessary for the time
correlation functions of the microscopic currents to de-
cay to zero. We suppose that this approach applies to sit-
uations where, for example, long time tails in the correla-
tion functions decay sufficiently rapidly for the transport
coefficients as defined by Eq. (2.2) to exist. In this way we
can still treat processes that are diffusive on long time
scales but have correlations on shorter time scales. Ac-
cordingly, the existence of a flux autocorrelation func-
tion, which differs from a 8 distribution on short time
scales, is still perfectly compatible with the validity of the
diffusion-type equation (2.10) on long time scales.

In this discussion we have tacitly assumed that we con-
sider a physical system in the proper thermodynamic lim-
it. However, for systems of finite volume, there is an
upper limit on the times we can consider because the
ranges of variation of the Helfand moments are bounded.
For example, if the system consists of hard spheres
placed in a cubical box of length L on a side, the posi-
tions of each particle vary only in the interval

_L <X, YiZ; = -i—£ s

2.13

> > ( )

while the momenta can only take values in the interval
—V2mE <p;,py,p;; < +V2mE , (2.14)

where E=E,,=2NkgT is the total energy. Similarly,
the energy of a particle can only lie in the range

O<E;<3kyTN . (2.15)
Because of these bounds, the moments are always of
bounded variation in the interval

sl

|G@| <cN" (2.16)

where C is some constant and 8'® are positive exponents,
which are respectively §2)=1 §M=4 §W=4 =1,
8(e)=%, and 8(’)'—“%, for three-dimensional gases. Ac-
cordingly, the range of variation of the moments grow
with the size of the system when the density and other in-
tensive variables are kept constant. Of course, most vari-

ations of the Helfand moments will be due to microscopic
motions of the particles and thus will be much smaller
than the bounds in Eq. (2.16). At any rate, as the system
gets larger, we expect that the diffusivelike behavior of
the moments, described by Eq. (2.10), will be valid over
increasingly larger regions of variations of the G'®.
After the discussion about the limited range over which
the Helfand moments obey the diffusive-type equation
(2.10) for finite systems, we may proceed.

III. ESCAPE-RATE FORMALISM

Within the range of validity of (2.10), we may set up a
problem of first passage for the moment G‘® correspond-
ing to the transport or rate processes of coefficient a. We
consider a statistical ensemble formed by copies of the
system, which we assume to be at equilibrium and micro-
canonical at total energy E (and eventually at fixed total
momentum in the case of periodic boundary conditions:
P,..=3N ,p;). For each copy, the motion of the Hamil-
tonian system (2.1) is integrated from the initial condi-
tions and the Helfand moment is calculated along the tra-
jectory. At each time, we count the number of copies
Ma(¢) for which the moment is still in the following in-
terval,

_X < (a)<+l
2_G’ -2

where the size of the interval y is sufficiently large to be
in the regime of diffusion of the moment but not too large
with respect to the total variation interval of the moment
allowed by the finiteness of the system. We are here
defining a problem of first passage, which can be solved
using the eigenvalues and eigenfunctions of the Fokker-
Planck equation (2.10) with the boundary conditions

p(—x/2)=p(+x/2)=0.

The solution of this eigenvalue problem is well known to
be

(3.1)

(3.2)

p(g,t)=3 c,exp(—yPt)sin | =~ g+% ,
n=1
2
mn

with @ =« , (3.3)

where the constants ¢, are fixed from the initial probabil-
ity density p(g,0). The number of copies of the statistical
ensemble that are still in the interval (3.1) is then given by

NO(t)=N, [ +X/;2p(g,t)dg . (3.4)
—X

At long times, the decay is dominated by the slowest de-
cay mode corresponding to the smallest decay rate y\®,
which defines the escape rate of the moment out of the in-
terval (3.1),

(3.5)

We are now in position to establish a relationship with
the deterministic dynamics. The Hamiltonian classical
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motion of the many-body system is chaotic in many
cases. This property has been proved by Sinai and co-
workers for some simple hard sphere gas models [26,27].
Also, strong numerical evidence exists, which shows that
half of the Lyapunov exponents are typically positive in
systems of statistical mechanics like the Lennard-Jones
gas at room temperatures [28]. We suppose that the
decomposition of phase space into ergodic components is
understood and that, beside the decomposition on the
known constants of motion, there is only a single ergodic
component.

We consider the set of all the trajectories for which the
Helfand moment remains forever within the interval
(3.1). Because most of the trajectories are expected to
exit this interval, the trapped trajectories must be excep-
tional and highly unstable, forming a set of measure zero
with respect to the microcanonical probability measure.
Based on earlier work on diffusion in the Lorentz gas and
in related models and on the basis that the trajectories
are typically of saddle type in systems of statistical
mechanics [9,10,16,20,21], we assume that the set of tra-
jectories is a fractal repeller. Indeed, this set is of vanish-
ing measure but may still contain an uncountable infinity
of periodic and nonperiodic trajectories. A set satisfying
these conditions is necessarily a fractal [2]. Moreover, it
is composed of unstable trajectories of saddle type so that
it forms a repeller (of saddle type) in phase space. These
properties can be proved for particular models like the
multibaker area-preserving map [16] as well as the array
of disk scatterers composing the periodic Lorentz gas.
Accordingly, it seems reasonable to assume that for more
general systems, such as a gas of hard spheres, the set of
trajectories for which the moments satisfy Eq. (3.1) form
a fractal repeller, with properties to be described in the
next paragraph.

A fractal repeller is characterized by different quanti-
ties and, especially, by an escape rate that is the deter-
ministic analog of the escape rate obtained in the preced-
ing first-passage problem. Moreover, in chaotic systems,
the escape rate is related to the sum of positive Lyapunov
exponents minus the KS entropy per unit time if these
quantities are well defined and positive [2,11-13,20].
These quantities are evaluated for the natural invariant
probability measure, whose support is the fractal repeller.
For the natural invariant measure, each cell of phase
space has a weight that is inversely proportional to the
local Lyapunov numbers (stretching factors). Therefore
we have [2,11-14,16,20]

y@=3 k,-(i?‘xa))—hxs(ﬂ‘x‘”) , (3.6)

x>0

where we denote by TX") the fractal repeller formed by
the trapped trajectories, for which the Helfand moment
G remains forever in the interval (3.1).

Combining the deterministic result (3.6) with the sta-
tistical result (3.5), we obtain the relationship
2

lim | 3 A(F)—hgg(FP) |,

V—o }‘i>0

X

o

a= lim
X—

3.7)

where the limit ¥ — o denotes the thermodynamic limit
to be taken before the limit Y — oo, which is internal to
the system.

With Table I, Eq. (3.7) shows how a general transport
or rate coefficients can in principle be related to the
Lyapunov exponents and the KS entropy of a fractal re-
peller. This fractal repeller is the phase space object cor-
responding to the escape process of the Helfand moment
associated to the transport or rate coefficient. In this
way, a connection is established between statistical and
mechanical considerations in phase space.

A remark is now in order about the magnitude of the
quantities appearing in (3.7). The sum of positive
Lyapunov exponents and the KS entropy per unit time
are very large, of the order of the number of particles
times the inverse of a typical kinetic time scale [29]. On
the other hand, the escape rate, which is the difference
between two such large numbers, has a much smaller
magnitude given by the time scales characteristic of hy-
drodynamics. In this way, the kinetic and hydrodynamic
levels are naturally connected with a formula like (3.7).

IV. CONCLUSIONS

We have shown that all of the transport coefficients for
a simple fluid, and chemical reaction-rate coefficients, can
be expressed in terms of an escape rate from an appropri-
ate fractal repeller. This completes a line of argument in-
itiated by previous work on the coefficient of diffusion for
a particle moving in a periodic Lorentz system [9] and for
a multibaker map [16].

The invariant measure supported by the fractal repeller
can be identified with a nonequilibrium state associated
with the corresponding transport process. In the limit
where the nonequilibrium constraint is relaxed (Y — ),
the nonequilibrium state tends to the equilibrium micro-
canonical state. In our theory, nonequilibrium processes
and out-of-equilibrium fluctuations can be defined at the
level of the phase space trajectories. In particular, the es-
cape rate of the fractal repeller gives the lifetime of an
out-of-equilibrium fluctuation corresponding to the con-
straint fixed by the parameter ¥. The escape rate (3.6) is
also the leading Pollicott-Ruelle resonance (generalized
eigenvalue) of the Frobenius-Perron (or Liouville) opera-
tor corresponding to the Hamiltonian dynamics (2.1) on
the repeller. This further result establishes a connection
between nonequilibrium statistical mechanics and the
spectral theory of the Liouvillian dynamics of classical
statistical ensembles [21], for general transport and
reaction-rate processes. We conclude that our results es-
tablish the necessary connection between the microscopic
and macroscopic descriptions of hydrodynamic, or at
least linear hydrodynamic, phenomena in fluids. This
connection allows us to overcome many of the fundamen-
tal problems of nonequilibrium statistical mechanics we
mentioned in Sec. I and opens in this respect the way to a
microscopic understanding of transport and reaction-rate
phenomena.

In a separate paper [22], we will show how the escape-
rate formula can be applied to several classes of dynami-
cal systems like the hard sphere gas and the lattice gas
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automata. We also describe there a large deviation for-
malism that allows us to extend the application of the es-
cape rate formula (3.7) from hyperbolic to nonhyperbolic
systems, in particular, using the Ruelle pressure function.
It now remains to apply this formalism to a number of
examples in order to understand the physical and
mathematical consequences of this approach to transport
in fluid systems. Applications of this formalism to cer-
tain types of one-dimensional diffusion problems will be
presented in [17], and applications to Lorentz lattice gas
cellular automata will be presented in [18]. In the latter
case, it is possible to use analytical as well as computer
simulation methods in order to study the appropriate
fractal repeller. Many further applications are possible.

Many interesting problems remain open in the present
context; in particular, the following:

(a) To provide experimental evidence for the micro-
scopic chaos at the basis of the present theory. Sugges-
tions along this line have been discussed elsewhere [30].

(b) To provide a more rigorous mathematical deriva-
tion of the escape-rate formalism used here.

(c) To develop the connection between this formalism
and those based upon periodic-orbit theory [31] and upon
a study of eigendistributions of the Liouville operator and
Ruelle resonances [16,32,33]. Already, such a connec-
tion has been discussed elsewhere [21], where it was
shown for the multibaker model that the diffusivelike
eigendistributions of the Liouville operator shares self-
similar properties with the fractal repeller underlying
diffusion. Both approaches make use of the leading ei-
genvalues (3.6) of the Frobenius-Perron (or Liouville)
operator and of its dependence on the wave number of
the diffusive eigenmode (k= /L).

(d) To extend this formalism to include transport in
mixtures, and to a treatment of higher order and non-
linear transport processes.

(e) To study the structure of the fractal repeller for in-
teresting cases where, as a consequence of long time tail
effects, transport processes are anomalous, such as two-
dimensional fluid systems [34].

(f) To establish the connection between the escape-rate
formalism for transport and the Gaussian thermostat for-
malism of Hoover and Posch [5], and of Evans, Morris,
and Cohen [6,7]. The Gaussian thermostatted systems
belong to a class of dynamical systems, which are time re-
versible without being volume preserving. The charac-
teristic quantities describing chaos in these thermostatted
systems have been described in [8,35]. The question of
the precise relation between these two formalisms has
been raised by Cohen and was the subject of an interest-
ing exchange of ideas [36].
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APPENDIX A: CASE
OF CHEMICAL REACTIONS

1. Summary of thermodynamic results

We consider a system where a single chemical reaction
takes place, namely,

(4 (4
> v;Xw—» > v X, .
y=1 y=1

(A1)

The numbers of particles of the reactants and products
change at each step of the reaction according to

AN, AN, AN,

Y1 V2 Ve

=AN",

(A2)

where v, =V, —v;,L are the stoichiometric coefficients

[37]. The degree of advancement of the reaction can be
measured in terms of the variation of the number N”
characterizing the reaction (A1l). We also introduce the
chemical concentrations C, =N, /V. At the phenomeno-
logical level of thermodynamics, the velocity of the reac-
tion is defined by

Ql

= (r
Cc =

L=w, (A3)

Yy
where 5,, are the average chemical concentrations [37].
The dependence of the reaction velocity on the concen-

trations themselves is given by the mass action law
[37,38],

c vt c v
w=k, [TC,)—k_JIC,) . (Ad)
ry=1 =1
The affinity of the reaction is defined by
c c CY Yy
A=—3 vu,=—kpgTn [ pos ) (AS5)
r=1 r=1 Cr

where p, = ,u(y’ +kpT InC,, is the chemical potential of the
species ¥ and it is known that the affinity vanishes at
thermodynamic equilibrium: A4°=0 [37,38]. Near the
thermodynamic equilibrium, both the reaction velocity w
and the affinity 4 can be expanded in terms of the varia-
tions of the chemical concentrations around their equilib-
rium values, C7,=C‘;,q +AC,. In the linear approxima-
tion, we obtain the equality

w=w (A6)

c V+
T with wed =k, J[ (C)7 ,

y=1
which allows us to obtain the Onsager coefficient of this
chemical process

LA w

wz—T~, with L = iy

(A7)

Yamamoto [39] and, later, Zwanzig [40] have shown that
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the Onsager coefficient of the chemical reaction is given
by the following integral of the autocorrelation function
in a classical system,

1

L= JANENYar (A8)
0

where the corresponding flux is here proportional to the

time derivative of the number N'” of particles, which is

characteristic of the reaction. Accordingly, we obtain

the result given in Table I for the reaction coefficient

—w_L

w
A
with (N(")=N{rheq

2. Master equation approach

The escape-rate formula can be obtained for chemical
reactions by using the master equation approach [38]. As
an example, we consider the isomerization

A<-B . (A10)

The numbers of particles 4 and B are the random vari-
ables of this process. The total number of particles is
conserved, N, +Ng=N=N,,, so that the process is
completely determined by the knowledge of the lone vari-
able N,. The evolution equation of the probability
P(N ,) that the system contains N 4 particles is [38]

d

+k_(N—N,4+1P(N,—1)
—k N P(N,)—k_(N—N,)P(N,).
(A11)

Introducing the fraction 0= f =N, /N =1 of particles
A, it can be shown [41] that the probability density
defined according to p(f)=p(N ,/N)=P(N ,) obeys the
Fokker-Planck equation,
P B
ar af(fp) D ar?’ (A12)

in the asymptotic limit where N — . In Eq. (A12), we
have that

f=—k,f+k_(1—f) (A13)
is the macroscopic rate equation while
ki k_
- (A14)

D=Nk, k)

is the diffusion coefficient. This Fokker-Planck equation
shows that the Helfand moment associated with the
chemical reaction, which is given in Table I,

1 N
—F—— (N, —NQ)=—F"r——
VVigT 4 Y A\ Vk,T

is the random variable of an Ornstein-Uhlenbeck stochas-

G(r)= (f,__feq) , (A15)

tic process around the equilibrium concentration

eq—
f X (A16)

L t+k_
On this ground, we can apply the argument of first pas-
sage for the Helfand moment (A 15). We look for the first
time at which the moment reaches the boundaries of the
interval
X (r X
— <G+ Al7
2 2 ( )
This first-passage problem correspond to the first escape
of the fraction f =N , /N out of the interval

qu_§ <f<f£‘l+§ s (AIS)
with
VkgT
e-—-‘/TB (A19)

We consider a statistical ensemble formed by copies of
the system and we count the number of copies that
remain within the interval (A18) at time z. The time evo-
lution of this statistical ensemble is solution of an eigen-
value problem of the same kind as (3.2)-(3.4) but with the
eigenfunctions given in terms of confluent hyper-
geometric functions [42]. Therefore, the number of
copies defined by (3.4) decays here also exponentially,

NO(t)~exp(—y{t) , (A20)

where the rate y{” is the smallest eigenvalue of the

Fokker-Planck operator (A12) solved by requiring that
the corresponding eigenfunction vanishes at the boun-
daries of the interval (A18). In the limit €—0, it can be
shown [42] that the eigenvalue is given by

, (A21)

in terms of the diffusion coefficient (A14). We mention
that this exponential decay is the slowest decay dominat-
ing the time evolution at long times after the faster decay
modes have died out. We can replace the size €, (A19), of
the escape interval of the variable f by the size y of the
escape interval of the corresponding Helfand moment
G, and we get

2
PDe~a|— | , (A22)
Y1 Y
with the rate coeﬂici>ent
Nk  k_ w
= A23
T Vky Tk, +ky) A (A23)

so that we recover the rate coefficient (A7) and (A9) of
the macroscopic theory, since
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w ) Nk k_
—— A4, with w¥=k Cf= v

T e A

In this way, we see the consistency of the first-passage

problem applied to the thermodynamic fluctuations de-
scribed by the master equation with the macroscopic
theory as well as with the Green-Kubo formula. The re-
lation to the fractal repeller of the deterministic dynamics
is discussed in full generality in the main part.
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